
A left-branching grammar design for incremental parsing

Petter Haugereid
a

and Mathieu Morey?
a,b

a

Division of Linguistics and Multilingal Studies, Nanyang Technological University,
14 Nanyang Drive, Singapore 637332, Singapore

petterha@gmail.com
b

Laboratoire Parole et Langage, Aix-Marseille Université,
5 avenue Pasteur, 13100 Aix-en-Provence, France

mathieu.morey@gmail.com

Summary. This paper presents a left-branching constructionalist grammar design where the
phrase structure tree does not correspond to the conventional constituent structure. The con-
stituent structure is rather reflected by embeddings on a feature STACK. The design is com-
patible with incremental processing, as words are combined from left to right, one by one,
and it gives a simple account of long distance dependencies, where the extracted element is
assumed to be dominated by the extraction site. It is motivated by psycholinguistic findings.

Keywords: HPSG, grammar engineering, incremental parsing, constructionalist grammars.

1 Introduction

Phillips (2003) shows that given a Government and Binding analysis involving Larsonian shells
(Larson, 1988; Culicover, 1997), it is possible to parse a tree incrementally, from left-to-right,
with a right-corner parser. The aim of this paper is to show that the same can be achieved with a
bottom-up HPSG parser, given an analysis of long-distance dependencies where it is assumed that
the fronted element is realized at the bottom left corner of the tree, rather than as the first daughter
of the top node.

A grammar fragment for English will be introduced, which on the one hand makes comparable
generalisations about syntactic structures as the Principles and Parameters theory, but which on the
other hand is radically different in that it employs left-branching trees, rather than right-branching
trees. The account does not assume verb movement.

The grammar referred to in this paper is a modified version of a grammar for Norwegian,
Norsyg, (see Haugereid (2009)). It is implemented with the LKB system (Copestake, 2002), which
is a grammar development environment mainly used to implement HPSG grammars. It is a bottom
up parser that employs phrase structure rules. All grammatical objects are expressed as typed
feature structures (Carpenter, 1992). The implemented grammar has much of the feature geometry
in common with HPSG grammars, but some central assumptions are different. Most importantly,
the grammar is a constructionalist grammar, and not a lexicalist grammar. This implies that open
lexical items in principle do not constrain their syntactic context, and do not carry information
about their argument structure. Instead, it is assumed that the syntactic structure is determined by
functional signs like inflections, function words and phrase structure rules. The argument structure
is determined by sub-constructions, which are syntactic realisations of Davidsonian sub-events.
? This research was supported in part by the Erasmus Mundus Action 2 program MULTI of the European Union, grant

agreement number 2009-5259-5.

HPSG 2012 Conference/Ellipsis Workshop, July 18-21, 2012, Chungnam National University, Daejeon, Korea
Copyright @ 2012 by Petter Haugereid and Mathieu Morey



The approach is motivated by psycholinguistic findings showing that arguments are incorpo-
rated into the syntactic structure before the verb is encountered (Aoshimia et al., 2009) and that am-
biguous structures can be parsed more efficiently by humans than unambiguous structures (Swets
et al., 2008).

2 Long Distance Dependencies
The use of a slash to account for long-distance dependencies in a mono-stratal account was in-
troduced by Gerald Gazdar (1981). A trace of the extracted item was assumed in the extraction
site, and the SLASH feature would establish a link between the trace and the filler. The SLASH

feature would “percolate up” the tree with the information about the trace. The mechanism behind
the more recent HPSG SLASH account in Bouma et al. (2001) involves entering all arguments and
modifiers of a verb onto a separate DEPENDENTS list and retrieving the slash from this list lexi-
cally. One problem with the lexical approach, from a psycholinguistic perspective, is that since the
modifiers of a verb cannot be listed in the verb’s lexical entry, a DEPENDENTS list cannot be fixed
before the parsing of the sentence is finished. So the SLASH mechanism ends up as a post-parsing
process.

The account of long distance dependencies in this paper is similar to the “trace” account, apart
from the fact that the SLASH feature “percolates down” the tree, rather than “up”. The tree in
Figure 1 is an analysis of the Wh-question Who does John admire?1 2

[valen
e-extrSLASH 〈〉

]




verbal-phraseARG 1SLASH 〈
1

〉






valen
e-binarySLASH 〈

1

〉





�ller-binarySLASH 〈

1

〉



1NPWho AUXdoes
NPJohn

Vadmire
Figure 1: The SLASH feature: Fronted object.

At the bottom of the tree, the head filler rule combines the fronted element (the NP Who) with
the auxiliary (does). The NP is entered onto the SLASH list. The binary filler rule is illustrated
in (1). The next two rules, the binary valence rule and the verbal predicate rule, combine the NP
John and the verb admire with the head projection. (Both these rules are head-initial.) The SLASH

feature of the daughter is reentered in the mother in both rules. And finally, at the top of the tree,
the valence extraction rule unifies the element on the SLASH list of its daughter with the extracted
argument. This rule is illustrated in (2).

1 The feature geometry in the implemented grammar is richer and more embedded than the one shown here. For
expository reasons, features that are not relevant for the present discussion have been omitted. There has also been
some overgeneralization with regard to what information is reentered in the SLASH list in the filler and extraction
rules. In reality, only the HEAD, VAL(ENCE), CONT(ENT), and CASE features are copied across. Finally, the force
rules that come on top of all parsed sentences in the implemented grammar have not been included.

2 The function of the feature ARG(UMENT) is to allow a word or phrase to constrain what kind of argument it can
combine with.



(1)


filler-binary

SLASH
〈

1

〉
ARGS

〈
1 ,
[
SLASH 〈〉

]〉


(2)


valence-extr
SLASH 〈〉

ARGS

〈ARG 2

SLASH
〈

2

〉〉


It is assumed that also subjects undergo the SLASH mechanism when they appear as the first
constituent in the clause. The sentence John admires Mary is given the analysis in Figure 2. Here,
the subject, John, is filled in by the unary head-filler rule, and subsequently entered onto the SLASH

list by the unary extraction rule. The unary filler rule is shown in (3). The rule can be seen as the
combination of the filled-in constituent and an empty auxiliary.

(3) 
filler-unary
HEAD aux

SLASH
〈

1

〉
ARGS

〈
1

〉


[valen
e-binarySLASH 〈〉

]

[verbal-phraseSLASH 〈〉

]

[valen
e-extrSLASH 〈〉

]




�ller-unaryARG 1SLASH 〈
1

〉




1NPJohn
Vadmires

NPMary

Figure 2: The SLASH feature: Fronted subject.

3 Parsing with the left-branching grammar design
The left-branching grammar design does not represent constituents in the syntactic tree, as is
common in most other frameworks. In this section, it will be shown how the constituent structure
of an utterance is reflected, and then how the design opens for incremental processing in a way
which is compatible with psycholinguistic findings.

3.1 Constituency
The left-branching grammar design represents constituents by means of a stacking/popping mech-
anism. This mechanism allows the parser to enter embedded structures by entering selected syn-
tactic and semantic features of the matrix constituent on a stack while taking on features of the



embedded structure. When the embedded structure has been processed, the matrix features are
popped from the stack, and the processing of the matrix constituent proceeds. Examples of con-
stituents where this mechanism is employed are NPs, PPs, CPs, and IPs. The mechanism allows
for multiple embeddings.

The STACK mechanism is motivated by the fact that gaps can appear inside embedded con-
stituents. The SLASH feature is not affected by the STACK mechanism, in the sense that while the
syntactic HEAD and VAL features and the semantic HOOK features are entered onto the stack, the
SLASH feature is passed up from the (first) daughter to the mother.3 Since the SLASH feature in
this way is passed on to the embedded structure, rather than the stack, the mechanism allows us to
keep the assumption that the extraction rule dominates the filler rule, also when the extraction site
is in an embedded structure.4

The STACK mechanism consists of two types of rules: i) the embedding rules, which enter
selected features of the matrix constituent on the STACK list, and ii) the popping rule, which pops
the features of the matrix constituent from the stack and takes them on. The stacking/popping
mechanism is illustrated for the CP that he slept in (4) in Figure 3.5

(4) John says that he slept.



popping-rule
HEAD 1 aux
STACK 3〈〉







HEAD compl

STACK 2

〈[
HEAD 1

]〉
⊕ 3




[
HEAD compl
STACK 2

]




embedding-rule
HEAD compl

STACK 2

〈[
HEAD 1

]〉
⊕ 3




[
HEAD 1 aux
STACK 3〈〉

]

[
HEAD aux
STACK 3〈〉

]

[
HEAD aux
STACK 3〈〉

]

NP

John

AUX

∅

NP

V

says

C

that

NP

he

V

slept

Figure 3: STACK mechanism in embedded clause

3 An exception to this principle is when the embedded constituent is an NP. (See discussion in Section 4.)
4 The percolation of the SLASH feature from mother to (initial) daughter in the left-branching structures makes the

presence of a gap accessible to all constituents appearing between the filler and the gap, and hence offers a straight-
forward account of the registering of the extraction path that is reflected on verbs and complementizers in languages
like Chamorro (Chung, 1998) and Irish (McCloskey, 1979).

5 Only the reentrancies of the HEAD feature is displayed in this analysis. As mentioned, also the VAL features and the
semantic HOOK are entered into the STACK.



The use of the stack reflects the constituent structure of a parsed string. In (4), there is one
embedding, the subordinate clause. The embedding rule and the popping rule marks the beginning
and the end of the embedded constituent. The constituent structure of this clause is given in Figure
4.

AUXP

NPi AUX NPi V CP

John ∅ says C NP V

that he slept

Figure 4: Constituent structure of sentence with subordinate clause

The sentence in (5) has three levels of embedding (CP, PP, and DP). The constituent structure
of the sentence is given in Figure 5.

(5) John says that he slept in the garden.

AUXP

NPi AUX NPi V CP

John ∅ says C NP V PP

that he slept P NP

in D N

the garden

Figure 5: Constituent structure of sentence with subordinate clause

The fact that the left-branching grammar design operates with a stack, should normally make
it non-incremental. It is however not so that constituents are put on a stack for later processing. It
is rather a way to keep track of what level of embedding the parser is operating on, and only a few
selected features of the matrix structure are entered. It can be compared to the use of SLASH in
HPSG, which function is to make sure that the values of certain features are reentered in another
part of the structure in order to account for long-distance dependencies.

3.2 Efficient processing of ambiguous structures

Even though the left-branching grammar design is incremental, it expresses the same ambigu-
ities as other constraint-based grammars. Since ambiguities always add complexity, the more
ambiguous an utterance is, the bigger is the processing effort for the parser. This contrasts with a
psycholinguistic study by Swets et al. (2008) which shows that processing of ambiguous syntactic
structures actually can be more efficient than corresponding unambiguous structures.

The left-branching grammar design could however open for a parsing strategy which would
yield results compatible with the findings reported by Swets et al. (2008). Instead of conducting a
full analysis of all possible readings of an ambiguous utterance and perform a parse ranking after
all the analyses are finished, one could let a parser for each processed word commit itself to a



particular analysis given the information available at that stage, that is, the structure that is built so
far and the word that is added to the structure. Assuming that at each step, a default analysis would
be available, parsing an ambiguous structure could in fact turn out to be more efficient, since an
unambiguity could conflict with the default analysis and hence create a greater processing effort.

One expected effect of such an incremental parsing strategy would be that the parser would run
into garden paths where it has to backtrack and do parts of the analysis over. This would also be in
line with psycholinguistic findings. Such a technique is proposed for HPSG parsers in Ninomiya
et al. (2009) and Ytrestøl (2011), who use shift-reduce parsers with backtracking mechanisms
instead of chart parsers.

4 Discussion
In the presentation of long distance dependencies in Section 2, the SLASH feature is “detached”
from the constituent tree. This makes it possible to give a very simple account of long distance
dependencies, namely one where the gap dominates the filler. The dependency between the gap
and the filler is accounted for by the SLASH feature, which goes from mother to the first daughter.

The presentation did not include the treatment of NP constituents. Like the subordinate clause
constituents and the PP constituents, the NP constituents should also be analyzed as embedded
structures, but in contrast to the other embedded structures mentioned, the SLASH value will here
be transferred to the STACK, rather than directly to the mother (and hence the embedded con-
stituent). This accounts for island effects of complex NPs, where elements cannot be extracted
from complex NPs (Ross, 1967, 118–158).

All elements that are represented as constituents in the constituent trees in (4) and (5) can be
coordinated. Coordination can be accounted for by means of coordination rules, which, when one
conjunct is parsed, will initiate another conjunct, which will be coordinated with the first.6 Each
conjunct will get the same SLASH list from the matrix constituent, and so coordination island
effects are accounted for.

As in other HPSG grammars, the semantics is composed in parallel with the syntax. This
means that there will be a (partial) semantic representation for each word added to the structure.
The constructionalist design of the grammar allows arguments to be linked as they appear. So even
if the language is verb final, like Japanese, the arguments will be linked instantly. With a lexicalist
design on the other hand, the arguments of a verb cannot be linked before the verb itself has been
parsed. So given a verb-final sentence, the whole sentence must be parsed before the arguments
can be linked (given that the parsing is done from left to right).

5 Conclusion
The grammar design that has been presented is radically different from standard HPSG. The most
striking diference is probaly the fact that the syntactic structure is not reflecting the constituent
structure, but rather the parsing strategy. This is a result both of providing a simple account of long
distance dependencies as well as making the grammar compatible with incremental processing in
line with psycholinguistic findings.

References
Sachiko Aoshimia, Masaya Yoshida, and Colin Phillips. 2009. Incremental processing of corefer-

ence and binding in japanese. Syntax, 12(2):93–134.

Gosse Bouma, Rob Malouf, and Ivan A. Sag. 2001. Satisfying constraints on extrac-
tion and adjunction. Natural Language and Linguistic Theory, 1(19):1–65. URL
http://ftp-linguistics.stanford.edu/sag/bms-nllt.pdf.

6 For the moment, the grammar has special rules to account for coordination ov VPs which in the analysis presented
does not have a designated constituent.



Bob Carpenter. 1992. The Logic of Typed Feature Structures with Applications to Unification-
based Grammars, Logic Programming and Constraint Resolution, volume 32 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, New York.

Sandra Chung. 1998. The Design of Agreement: Evidence from Chamorro.
Folktales of the World Series. University of Chicago Press. URL
http://books.google.com.sg/books?id=UwOdArsREBEC.

Ann Copestake. 2002. Implementing Typed Feature Structure Grammars. CSLI publications.

Peter W. Culicover. 1997. Principles and Parameters. An Introduction to Syntactic Theory. Oxford
University Press.

Gerald Gazdar. 1981. Unbounded dependencies and coordinate structure. Linguistic Inquiry,
12:155–184.

Petter Haugereid. 2009. A constructionalist grammar design, exemplified with Norwegian and
English. Ph.D. thesis, NTNU, Norwegian University of Science and Technology. URL
http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-5755.

Richard K. Larson. 1988. On the double object construction. Linguistic Inquiry, 19:335–391.

James McCloskey. 1979. Transformational Syntax and Model-Theoretic Semantics. Dordrecht:
Reidel.

Takashi Ninomiya, Takuya Matsuzaki, Nobuyuki Shimizu, and Hiroshi Nakagawa. 2009. De-
terministic shift-reduce parsing for unification-based grammars by using default unifica-
tion. In Proceedings of the 12th Conference of the European Chapter of the ACL (EACL
2009), pages 603–611. Association for Computational Linguistics, Athens, Greece. URL
http://www.aclweb.org/anthology/E09-1069.

Colin Phillips. 2003. Linear order and constituency. Linguistic Inquiry, 34:37–90.

John Robert Ross. 1967. Constraints on variables in syntax. Ph.D. thesis, MIT.

Benjamin Swets, Timothy Desmet, Charles Clifton Jr., and Fernanda Ferreira. 2008. Underspec-
ification of syntactic ambiguities: Evidence from self-paced reading. Memory & Cognition,
36(1):201–216.

Gisle Ytrestøl. 2011. Optimistic backtracking - a backtracking overlay for deter-
ministic incremental parsing. In Proceedings of the ACL 2011 Student Session,
pages 58–63. Association for Computational Linguistics, Portland, OR, USA. URL
http://www.aclweb.org/anthology/P11-3011.


